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Long-lived spin states have been observed in a variety of systems. Although the dynamics underlying the
long lifetimes of these states are well understood in the case of two-spin systems, the corresponding
dynamics in systems containing more spins appear to be more complex. Recently it has been shown that
a selection rule for transitions mediated by intramolecular dipolar relaxation may play a role in deter-
mining the lifetimes of long-lived states in systems containing arbitrary numbers of spins. Here we pres-
ent a theory of long-lived states in systems containing three and four spins and demonstrate how it can
be used to identify states that have little or no intramolecular dipolar relaxation.

� 2008 Published by Elsevier Inc.
1. Introduction

Recent work has demonstrated the existence of nuclear spin
states with relaxation times significantly longer than the conven-
tional spin–lattice relaxation time [1,2]. These states may have a
variety of applications in NMR and biomedical imaging, including
the study of ‘slow’ processes such as diffusion [3]. In the context
of biomedical imaging, long-lived spin states may dramatically en-
hance the usefulness of hyperpolarized liquid contrast media [4,5].
These media, which can be imaged with a sensitivity many orders
of magnitude greater than is possible using conventional tech-
niques, are currently being investigated as tools for angiography
[4,5], perfusion imaging [6,7], and metabolic studies aimed at can-
cer diagnosis [8–10]. However, the comparatively short spin–lat-
tice relaxation times of the available agents limit their
applications to the study of rapid processes that take place over
timescales on the order of a few minutes. By combining hyperpo-
larization with long-lived states, it may be possible to prepare
media that can be imaged with high sensitivity over extended peri-
ods of time.

Long-lived states have been observed in a variety of spin sys-
tems. In a generic two-spin system, the antisymmetric singlet state
jabi � jbai has been shown to persist up to 37 times longer than the
T1 relaxation times of constituent spins [3]. This lifetime prolonga-
tion is only observed when the effects of the chemical shift Hamil-
tonian are suppressed, either by placing the system in a weak
magnetic field [1] or by applying suitable continuous radiofre-
quency (RF) irradiation at high field [2]. Several works have studied
Elsevier Inc.
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the effects of high magnetic fields on long-lived states and pro-
posed RF irradiation schemes for lifetime prolongation at high field
[2,11–14]. In some cases it is challenging to fully mitigate the ef-
fects of the chemical shift Hamiltonian using these methods. Con-
sequently, in certain cases it may happen that lifetime
prolongation is most readily achieved at low field. Long-lived
states have also been observed in systems containing more than
two spins, and have been prepared using both RF pulses [15] and
parahydrogen-induced polarization [16,17].

In systems containing two spins, the singlet state is long-lived
because it is immune to relaxation mediated by intramolecular
dipolar interactions [14]. This immunity is a consequence of the
fact that the singlet state, which is antisymmetric under exchange
of the spins, cannot be converted into a symmetric triplet state by
intramolecular dipolar interactions. In multi-spin systems, such
symmetry arguments only apply in very specialized cases. The
variety of long-lived states that have been observed experimen-
tally suggests that other mechanisms may be at work. Various
mechanisms that can give rise to long-lived states in multi-spins
systems have been suggested, including J-stabilization [18] and
quantum mechanical selection rules [19].

Here we discuss the implications of quantum mechanical selec-
tion rules for intramolecular dipolar relaxation in general spin sys-
tems at low field [19]. First, we show that these selection rules
predict the existence of three- and four-spin states that are com-
pletely immune to intramolecular dipolar relaxation in the ex-
treme narrowing limit. The extreme narrowing limit [20] is a
good approximation for many systems of interest, particularly at
low field, and provides some simplification of the analysis. Devia-
tions from the extreme narrowing limit for small molecules in
solution NMR are not expected to qualitatively modify our
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conclusions, but are worthy of further study. The immunity of
these long-lived states from intramolecular dipolar relaxation is
the consequence of a ‘bottleneck’ in the relaxation process that is
imposed by the selection rules and that prevents populations in
certain states from coming into equilibrium with others. Such bot-
tlenecks do not occur in arbitrary systems, but only in certain sys-
tems where the spins are located at specific spatial locations
within the tumbling molecule. Hence, another consequence of
these selection rules is that it is possible to derive a purely geomet-
rical criterion that determines whether a particular spin system
can have states with vanishing dipolar relaxation, independent of
any consideration of the J-couplings. For those systems that do
not possess states that are totally immune to dipolar relaxation,
the selection rules can be used to determine optimal combinations
of scalar couplings that minimize the dipolar decay rate. Finally,
we highlight certain differences between systems with more than
four spins and those with four or fewer spins. Although systems
with more than four strongly coupled spins may have long-lived
states, these states require a relatively complex cancellation
among various decay rates.

It is possible that many mechanisms of lifetime prolongation in
addition to those described here are relevant to the dynamics of
long-lived states. In particular, proof that a system does not have
a selection rule relaxation bottleneck does not constitute proof that
the system has no long-lived states of any kind. To avoid potential
confusion stemming from this issue, we will refer to states that are
long-lived because of selection rules and relaxation bottlenecks as
‘dipolar selection rule’ (DSR) long-lived states, or simply as ‘DSR
states.’ We will refer to states whose dipolar relaxation rates van-
ish exactly in the extreme narrowing limit as ‘exact’ DSR states. In
addition to states of this kind, we find that certain multi-spin sys-
tems possess long-lived population imbalances whose lifetimes are
prolonged because of a discrete exchange symmetry similar to that
seen in systems containing two spins [14]. Furthermore, certain
DSR states decompose into pairwise combinations of singlets that
are long-lived for many of the same reasons as a singlet state of
two spins. Apart from such ‘singlet-like’ states, however, there
are many examples of DSR states that do not contain singlet com-
binations and that have no particular exchange symmetries.

In the following sections we present a brief overview of selec-
tion rules in intramolecular dipolar relaxation, and give a detailed
account of the low-field energy eigenstates of the three- and four-
spin systems. We find that in the three-spin system, only systems
where the three spins are collinear have states whose dipolar
relaxation rates vanish exactly. By contrast, in the four-spin sys-
tem, such states occur in linear, planar, and fully three-dimen-
sional systems. Perhaps surprisingly, we find that two highly
symmetric cases, one where three spins are placed at the vertices
of an equilateral triangle, and another where four spins are placed
at the vertices of a tetrahedron, do not possess exact DSR states.
j=1/2
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j=3/2
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Fig. 1. Left: Energy levels and forbidden transitions (indicated by crossed arrows) in the
system. On the right, the single crossed arrow between the j ¼ 0 and j ¼ 1 multiplets in
We have not yet conducted a systematic survey of molecular
structures to ascertain which, if any, of the combinations of geom-
etries and scalar couplings described here can be realized in prac-
tice. Rather, our intention is to describe a method for identifying
geometries and couplings that give rise to long-lived states, and
to demonstrate that such states can, in principle, exist in a variety
of systems. The expressions provided here can be used to select
promising candidates for further studies of long-lived states. We
note that, in many cases, both positive and negative scalar cou-
plings with widely varying magnitudes are necessary to attain
complete immunity to dipolar relaxation.

In addition to the work already cited, certain earlier papers have
identified geometries of three-spin systems that are immune to
intramolecular dipolar interactions and hence can possess
long-lived DSR states as described here. In [21,22] it was noted that
linear three-spin systems with suitable couplings possess states
immune to intramolecular dipolar relaxation. Similar states have
been identified in triangular three-spin systems that are free to
rotate about their axis of symmetry but that are fixed with respect
to other axes [23].

2. The Hamiltonian and the energy eigenstates

Consider a spin system consisting of N coupled spins where the
chemical shift Hamiltonian is negligible in comparison to the scalar
couplings. The effects of the chemical shift Hamiltonian can be
eliminated by placing the system in a sufficiently weak magnetic
field [1] or by subjecting the system to suitable RF irradiation at
high field [2]. In the following, we will refer to all such conditions
as ‘low field’ conditions. In the low field limit, the Hamiltonian for
such a spin system consists of scalar couplings only:

H0 ¼
XN

k;l¼1;k<l

2pJkl
~Ik �~Il: ð1Þ

Because the Hamiltonian is invariant under spatial rotations, the
eigenstates of this Hamiltonian are also eigenstates of the total spin
angular momentum~I2 ¼

P
k
~Ik

� �2
and its z-component Iz ¼

P
k
~Ik;z.

We may therefore denote the energy eigenstates by jjm; Ei, where
j is the total spin angular momentum, m is the magnetic quantum
number m ¼ �j . . .þ j, and E is the energy of the state. As examples,
the three-spin system possesses a single j ¼ 3=2 multiplet and two
distinct j ¼ 1=2 doublets (for a total of 8 states), while the four-spin
system possesses a single j ¼ 2 multiplet, three j ¼ 1 triplets, and
two j ¼ 0 singlets (for a total of 16 states). The eigenstates are sche-
matically depicted in Fig. 1. In the following discussion we will as-
sume that there are no accidental degeneracies between the states
with the same total spin j.

The foregoing discussion can be made explicit by evaluating the
matrix elements of the Hamiltonian of Eq. (1) in a basis of total
j=0

j=1

x

x

j=2
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three-spin system. Right: Energy levels and forbidden transitions in the four-spin
dicates that all j ¼ 0-to-j ¼ 1 transitions are forbidden.
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spin eigenstates. The choice of basis is somewhat arbitrary, and so
we adopt the following procedure for establishing a basis. For each
value of j, we select an orthonormal basis of states having the max-
imal magnetic quantum number m. We then determine the states
with lower values of m by applying the lowering operator
I� ¼

P
kIk;�, where Ik;� ¼ ðIk;x � iIk;yÞ=

ffiffiffi
2
p

, as many times as neces-
sary to complete the multiplet. The resulting states are then nor-
malized to unity without modification of their complex phase.

2.1. The three-spin system

In the three spin system the j ¼ 3=2 states are given by

j3=2;mi / fjaaai; I�jaaai; I2
�jaaai; I3

�jaaaig ð2Þ

for m ¼ 3=2;1=2;�1=2;�3=2, respectively. For brevity we have
omitted the normalization factors of the lower m states. In addition,
we must specify a basis for two distinct j ¼ 1=2 subspaces. We dis-
tinguish these doublets using labels ‘A’ and ‘B’. For the A doublet, we
choose a pair of states with spins 2 and 3 in a singlet state. Explic-
itly, the m ¼ 1=2 state is given by j1=2;1=2iA ¼ ðjaabi � jabaiÞ=

ffiffiffi
2
p

,
and the complete doublet is given by

j1=2;miA / fj1=2;1=2iA; I�j1=2;1=2iAg: ð3Þ

The B doublet is then uniquely specified, up to a phase, by the
requirement that it be orthogonal to the A doublet of Eq. (3). We
may choose j1=2;1=2iB ¼ ð2jbaai � jaabi � jabaiÞ=

ffiffiffi
6
p

, and

j1=2;miB / fj1=2;1=2iB; I�j1=2;1=2iBg: ð4Þ

The states in Eqs. (3) and (4) are eigenstates of the total spin, but are
not (in general) eigenstates of the Hamiltonian in Eq. (1).

The rotational invariance of the Hamiltonian in Eq. (1) implies
that it is block diagonal in the quantum numbers j and m. Ordering
the basis elements from Eqs. (2)–(4) as fj3=2;3=2i; . . . ;

j3=2;�3=2i; j1=2;1=2iA; j1=2;1=2iB; j1=2;�1=2iA; j1=2;�1=2iBg, the
matrix form of H, in block notation, is

H ¼
Hj¼3=2 0 0

0 Hj¼1=2;m¼1=2 0
0 0 Hj¼1=2;m¼�1=2

2
64

3
75 ð5Þ

where Hj¼3=2 is a diagonal matrix with all diagonal entries equal to
pðJ12 þ J13 þ J23Þ=2 � pJ=2, and the j ¼ 1=2 blocks are given by

Hj¼1=2;m¼1=2 ¼ Hj¼1=2;m¼�1=2 ¼
p
2

�3J23

ffiffiffi
3
p
ðJ13 � J12Þffiffiffi

3
p
ðJ13 � J12Þ J23 � 2J13 � 2J12

" #
:

ð6Þ

Because the j ¼ 3=2 block of the Hamiltonian is already diagonal,
the diagonalization of the Hamiltonian reduces to the problem of
diagonalizing the two-by-two matrix in Eq. (6). The resulting eigen-
states can be expressed in terms of the states A and B given in Eqs.
(3) and (4) in terms of a single mixing angle, which we denote by w3

for the three-spin system. The energy eigenvalues in the j ¼ 1=2
subspace are determined by a two-by-two diagonalization, and
are given by

E� ¼
p
2
�J � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

12 þ J2
13 þ J2

23 � J12J23 � J13J23 � J12J13

q� �

� p
2
ð�J � DÞ ð7Þ

(recall that J ¼ J12 þ J13 þ J23), and the corresponding eigenstates are
given by

j1=2;m; Eþi ¼ cos w3j1=2;miA þ sin w3j1=2;miB;
j1=2;m; E�i ¼ � sin w3j1=2;miA þ cos w3j1=2;miB; ð8Þ

where the mixing angle w3 is given in terms of the scalar couplings
Jkl by
w3ðJklÞ ¼ tan�1 �J12 � J13 þ 2J23 þ Dffiffiffi
3
p
ð�J12 þ J13Þ

: ð9Þ

We choose a branch of the inverse tangent such that the range of w3

is �p=2 < w3 6 p=2. From Eqs. (6)–(9), we see that the energy
eigenbasis is specified by a single dimensionless function of the sca-
lar couplings, namely the mixing angle w3.

For future reference, we note that the states j1=2;m; Eþi contain
a singlet combination of spins at the following values of w3: For
w3 ¼ 0, j1=2;m; Eþi contains a singlet of spins 2 and 3, while for
w3 ¼ p=3, j1=2;m; Eþi contains a singlet of spins 1 and 2. In addi-
tion, for w3 ¼ �p=3, j1=2;m; Eþi corresponds to a singlet of spins
1 and 3. The states j1=2;m; E�i contain a singlet combination of
spins at values of w3 shifted by �p=2. This is an exhaustive list of
all singlet combinations because it includes all pairwise combina-
tions of the spins.

2.2. The four-spin system

The analysis of the four-spin system proceeds as in Eqs. (2)–(9).
As in the three-spin system, the states of highest spin, in this case
j ¼ 2, are readily found:

j2;mi / fjaaaai; I�jaaaai; I2
�jaaaai; I3

�jaaaai; I4
�jaaaaig: ð10Þ

The four-spin system possesses three spin-one triplets. We label
these states as j1;miA, j1;miB, and j1;miC . An orthogonal basis of
j ¼ 1, m ¼ 1 states is given by

j1;1iA ¼
1
2
ðjaaabi � jaabai � jabaai þ jbaaaiÞ

j1;1iB ¼
1
2
ðjaaabi � jaabai þ jabaai � jbaaaiÞ

j1;1iC ¼
1
2
ðjaaabi þ jaabai � jabaai � jbaaaiÞ:

ð11Þ

States with lower m values are obtained by applying the lowering
operator I�. The four-spin basis is completed by two j ¼ 0 states,
which we label as j0;0iA, and j0;0iB. We choose the state j0; 0iA to
be that state in which spins one and two are in a singlet state, while
the third and fourth form a second singlet:

j0;0iA ¼
1
2
ðjababi � jabbai � jbaabi þ jbabaiÞ ð12Þ

The B state is determined, up to a phase, by the requirement that it
is orthogonal to the state in Eq. (12) and that it is an eigenstate of
the total spin with eigenvalue 0. We choose

j0;0iB ¼
1

2
ffiffiffi
3
p ð2jaabbi þ 2jbbaai � jabbai � jbaabi � jababi � jbabaiÞ:

ð13Þ

As before, the Hamiltonian is block-diagonal, and in block notation
takes the form

H ¼

Hj¼2 0 0 0 0
0 Hj¼1;m¼1 0 0 0
0 0 Hj¼1;m¼0 0 0
0 0 0 Hj¼1;m¼�1 0
0 0 0 0 Hj¼0

2
6666664

3
7777775
: ð14Þ

The j ¼ 2 block is a diagonal matrix with all diagonal entries equal
to pð

P
k<l JklÞ=2. The j ¼ 1 blocks will not be needed for the analysis

of relaxation bottlenecks and so are omitted for brevity. The j ¼ 0
block is given by the two-by-two matrix

Hj¼0¼
p
2

�3ðJ12þ J34Þ �
ffiffiffi
3
p
ðJ13� J14� J23þ J24Þ

�
ffiffiffi
3
p
ðJ13� J14� J23þ J24Þ J12�2J13�2J14�2J23�2J24þ J34

" #
:

ð15Þ
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The j ¼ 0 energy eigenbasis is specified by a single mixing angle,
which we denote by w4 to emphasize that it plays an analogous role
to the corresponding mixing angle in the three-spin case. Explicitly,
we have

j0; 0; Eþi ¼ cos w4j0;0iA þ sin w4j0;0iB;
j0; 0; E�i ¼ � sin w4j0;0iA þ cos w4j0; 0iB: ð16Þ

The expressions for w4 and the energies E� are lengthy and
have been given in Appendix A.1. As in the three-spin case,
we have �p=2 < w4 6 p=2. Furthermore, as in the three-spin
case, the low-field energy eigenstates in the j ¼ 0 and j ¼ 2
manifolds are specified completely in terms of a single dimen-
sionless function of the scalar couplings, namely the mixing
angle w4.

Although we forego a detailed discussion of the j ¼ 1 energy
eigenbasis, we note that the eigenstates can be specified in terms
of the states in Eq. (11) and three mixing angles. Each block of
the j ¼ 1 Hamiltonian is a three-by-three matrix that can be diag-
onalized by a three-by-three orthogonal transformation that is
conveniently specified in terms of three Euler angles ða; b; cÞ. These
angles are independent of m by rotational symmetry. For the
j ¼ 1;m ¼ 1 states, we have

j1;1; E1i
j1;1; E2i
j1;1; E3i

0
B@

1
CA ¼

cos c sin c 0
� sin c cos c 0

0 0 1

0
B@

1
CA

1 0 0
0 cos b sin b

0 � sin b cos b

0
B@

1
CA

�
cos a sin a 0
� sin a cos a 0

0 0 1

0
B@

1
CA
j1;1iA
j1;1iB
j1;1iC

0
B@

1
CA; ð17Þ

and similarly for the m ¼ 0;�1 states.
For future reference, we note that the state j0;0; Eþi reduces to

a combination of pairwise singlet states at the following values of
w4: for w4 ¼ 0; j0;0; Eþi corresponds to a singlet of spins 1 and 2
together with a singlet of spins 3 and 4. For w4 ¼ p=3; j0;0; Eþi
corresponds to a singlet of spins 1 and 3 together with a singlet
of spins 2 and 4, while for w4 ¼ �p=3; j0;0; Eþi corresponds to a
singlet of spins 1 and 4 together with a singlet of spins 2 and
3. The state j0;0; E�i contains a singlet combination of spins at
values of w4 that are shifted by w4 ! w4 � p=2. Since this list in-
cludes all pairwise combinations of the spins, it is an exhaustive
list of all singlet combinations.
3. Transition rates

Using a given basis of energy eigenstates, we can compute the
transition rates between these states that result from intramolecu-
lar dipolar interactions. The intramolecular dipolar Hamiltonian is
given by

HDD ¼ �
ffiffiffiffiffiffi
8p
15

r XN�1

k¼1

XN

l¼kþ1

X2

M¼�2

bklY2;�Mðr̂klÞTkl
2;M ð18Þ

where bkl ¼ 3l0c
2�h=4pr3

kl, ~rkl is the (time-dependent) vector
connecting spins k and l, and the spin operators Tkl

2;M are given
by

Tkl
20 ¼

1ffiffiffi
6
p f2Ik

z Il
z � ðI

k
þIl
� þ Ik

�Il
þÞg;

Tkl
2�1 ¼ �

1ffiffiffi
2
p fIk

z Il
� þ Ik

�Il
zg; Tkl

2�2 ¼ Ik
�Il
�: ð19Þ

The expression for the transition rate between a pair of states jai
and jbi is given by [20]
Wa!b ¼
Z þ1

�1
hajHDDðtÞjbihbjHDDðt þ sÞjaie�iðEa�EbÞs

¼ 8p
15

X
ij;kl;M;M0

bijbklhajTij
MjbihbjT

kl
M0 jai

�
Z þ1

�1
Y2Mðr̂ijðtÞÞY2M0 ðr̂klðt þ sÞÞe�iðEa�EbÞs ð20Þ

In the extreme narrowing limit the correlation function is given by
[23]Z þ1

�1
Y2Mðr̂ijðtÞÞY2M0 ðr̂klðt þ sÞÞe�iðEa�EbÞs

¼ ð�1ÞM sc

4p
dM;�M0P2ðcos hij;klÞ; ð21Þ

where hij;kl is the angle, in the frame of the molecule, between r̂ij and
r̂kl, and sc is the correlation time for the molecular tumbling. P2 is
the second order Legendre polynomial. From this, we obtain

Wa!b ¼
2sc

15

X
ij;kl;M

ð�1ÞMbijbklhajTij
MjbihbjT

kl
�M jaiP2ðcos hij;klÞ: ð22Þ

For purposes of subsequent calculations, we have implemented the
sum in Eq. (20) using Mathematica (Wolfram Research, Champaign,
Illinois).

The matrix element hjm; EjHDDðtÞjj0m0; E0i is subject to a selection
rule [19], and vanishes unless j is in the range
jj0 � 2j; jj0 � 2j þ 1; . . . ; j0 þ 2:

hjm; EjHDDðtÞjj0m0; E0i ¼ 0 if j 6¼ jj0 � 2j; . . . ; j0 þ 2 ð23Þ

Consequently, in the three-spin system, the intramolecular dipolar
transition rates between any pair of j ¼ 1=2 states vanish identi-
cally; only transitions between j ¼ 1=2 and j ¼ 3=2 are allowed.
Similarly, in the four-spin system, transitions between the j ¼ 0
states are forbidden, as are transitions between the j ¼ 0 and j ¼ 1
states. Of course, this is not to say that a population in the three-
spin system cannot migrate from one j ¼ 1=2 state to the other.
However, the selection rule in Eq. (23) does mean that such a
migration can only be achieved by a two-stage process where the
system passes first through the j ¼ 3=2 state and then subsequently
back to the j ¼ 1=2 states. Similarly, in the four-spin system,
populations in the j ¼ 0 states can only equilibrate via intermediate
transitions to the j ¼ 2 states. The pattern of allowed and forbidden
transitions illustrated in Fig. 1.

The above considerations show that in the three- and four-spin
systems the only allowed transitions from the lowest spin states
are those to highest spin states (namely from j ¼ 1=2 to j ¼ 3=2
in the three-spin case, and from j ¼ 0 to j ¼ 2 in the four-spin case).
Because the highest-spin energy eigenstates are independent of
the scalar couplings, and because the lowest-spin energy eigen-
states depend on the scalar couplings only through a single mixing
angle (w3 or w4), the transition rates to and from the lowest spin
states likewise depend on the scalar couplings only through a sin-
gle mixing angle. Hence, the transition rates to and from the low-
est-spin energy eigenstates of the three- and four-spin systems
have a simple dependence on the scalar couplings.

The upshot of this discussion is that the decay rates of the low-
est spin states in the three- and four-spin systems are functions of
(i) the geometry of the molecule under consideration and (ii) a sin-
gle mixing angle that depends implicitly upon the scalar couplings
of the system. Mathematically, the rate matrix W in Eq. (22) has
the property that, for any given lowest-spin state,X

X
W jLowest spini!jXi ¼ FðwN; f~r1;~r2; . . .gÞ; ð24Þ

where the sum extends over all accessible final states X,~rk are the
body-frame coordinates of the spins, and N ¼3 or 4.
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The subsequent analysis is simplified by two final observations
regarding the rate matrix in Eq. (22). First, as a consequence of the
form of the dipolar Hamiltonian, the rate matrices for two mole-
cules that have the same shape but different overall sizes will differ
only by a factor equal to the sixth power of the ratio of their sizes.
Second, the rate in Eq. (24) involves two factors of the lowest-spin
energy eigenstates (see Eq. (20)). Substitution of the eigenstates gi-
ven in Eqs. (2) and (8) for three-spin case and Eqs. (10) and (16) for
the four-spin case results in expressions that are quadratic in the
sine and cosine of the mixing angle. Using the double-angle for-
mula and noting that the Eþ and E� energy eigenstates in Eqs. (8)
and (16) differ only by the substitution wN ! wN þ p=2, Eq. (24)
can be written in the form

X
X

W jLowest spin;E� i ! jXi ¼
3l2

0c
4�h2sc

40p2r6
12

½Að~q1;~q2; . . .Þ

þ Bð~q1;~q2; . . .Þ cosð2wN þ d�Þ þ Cð~q1;~q2; . . .Þ sinð2wN þ d�Þ�
ð25Þ

where~qk ¼~rk=r12 is the (dimensionless) radius vector of the kth spin,
scaled by the distance between spins 1 and 2. The functions A;B,
and C are dimensionless functions of the system’s geometry. The
phase d� is equal to 0 for the Eþ states and p for the E� states. Be-
cause the mixing angles have the range �p=2 < wN 6 p=2, the argu-
ments of the sine and cosine in Eq. (25) cover the entire range from
0 to 2p for both the Eþ states and the E� states. Hence, if the decay
rate of the Eþ state vanishes for a given value of wN , there will al-
ways be a second, corresponding configuration where wN is shifted
by p=2 and the E� state is long-lived. In the following sections, we
will work in terms of the Eþ state, with the understanding that all
of the results can be translated in a one-to-one way for the E� state
as well.

Eq. (25) provides the starting point for a systematic search for
systems with relaxation bottlenecks and long-lived states. Indeed,
differentiating Eq. (25) with respect to wN shows that the extrema
are located at values of wN satisfying tan ð2wN þ d�Þ ¼ C=B. Invert-
ing this equation and choosing the appropriate branch of the in-
verse tangent gives the absolute minimum, which in turn
provides a lower bound on the transition rate:X

X
W jLowest spin;E�i!jXi P L

� 3l2
0c

4�h2sc

40p2r6
12

½Að~q1;~q2; . . .Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð~q1;~q2; . . . Þ2 þ Cð~q1;~q2; . . . Þ2

q
�: ð26Þ

For three- and four-spins systems, the quantity L provides a purely
geometrical lower bound on the decay rates of the lowest spin
states that is independent of the particular values of the scalar cou-
plings. Qualitatively speaking, geometrical configurations of spins
that have large values of L are unlikely to have long-lived DSR
states, regardless of their scalar couplings. On the other hand, con-
figurations that have small (or vanishing) values of L will possess
long-lived DSR states provided that the scalar couplings lead to
mixing angles that satisfy, at least approximately, the criterion
tan ð2wN þ d�Þ ¼ C=B. Consequently we see that a necessary (but
not sufficient) condition for the existence of a state whose dipolar
relaxation rate exactly vanishes (that is, an ‘exact’ DSR state) is that
the quantity in brackets in Eq. (26) vanishes. Defining

Dð~q1;~q2; � � �Þ ¼ Að~q1;~q2; � � �Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð~q1;~q2; � � � Þ2 þ Cð~q1;~q2; � � � Þ2

q
; ð27Þ

we conclude that if a system possesses an exact DSR state, then D
must vanish. The converse is not true: if the scalar couplings do
not obey tanð2wN þ d�Þ ¼ C=B, it is possible for a system to have
D=0 without also having an exact DSR state. Because the criterion
in Eq. (27) does not involve the scalar couplings, we can use this
condition to determine, from purely geometrical considerations,
whether it is possible for a system to have a long-lived DSR state.

The quantity D in Eq. (27) enables us to determine geometrical
configurations of spins that may potentially possess DSR states, but
says nothing about the scalar couplings that are required in order
to obtain such a state. In order to establish the existence of an exact
DSR state in a physically realizable system, we must determine
combinations of scalar couplings that yield the mixing angle for
which the right-hand side of Eq. (25) vanishes. In Appendix A.2 it
is shown that for the three- and four-spin cases, this is always
mathematically possible. In practice, we find that the families of
scalar couplings required for exact DSR states often contain both
positive and negative couplings.

A measure of the lifetime enhancement that can result from the
mechanisms described above can be obtained by comparing the
decay rates of states at high and low field. To do so, we must com-
pute the rate matrix Eq. (22) for a suitable set of high-field energy
eigenstates. In general, these high-field eigenstates will depend
upon a large number of parameters, including the scalar couplings
and chemical shifts of the system. However, a reasonable estimate
of the eigenstates can be obtained by noting that in the high-field
limit, the scalar couplings in many (but by no means all) systems
are small compared to the chemical shifts. In this limit, the Zeeman
interaction dominates and the energy eigenstates are given,
approximately, by the product spin states jaaai; jaabi, etc. Given
the rate matrices Whigh and W low at high and low field, the time
dependence of the vector q of populations is determined by the
rate equations [20]

dqa

dt
¼
X

b

Wab � dab

X
c

Wac

 !
ðqb � qEquilibrium

b Þ: ð28Þ

The solution to Eq. (28) is a linear combination of exponentially
decaying terms that tends towards the equilibrium solution as
t !1. The longest-lived population imbalance is dictated by the
smallest non-trivial eigenvalue of the matrix in parentheses in Eq.
(28) (the matrix always possesses a trivial zero eigenvalue corre-
sponding to the equilibrium state). We may quantify the ratio of
high-field and low-field lifetimes in terms of an ‘enhancement fac-
tor’ E given by

E ¼
Smallest non-trivial eigenvalue ofðWHigh

ab � dab
P

c
WHigh

ac Þ

Smallest non-trivial eigenvalue ofðWLow
ab � dab

P
c

WLow
ac Þ

: ð29Þ
4. Results and discussion

4.1. Three-spin systems

We consider a three-spin system with geometry as illustrated in
Fig. 2. This geometry is general enough to encompass any configu-
ration of three spins. Without loss of generality we label the spins
such that spins 1 and 2 are closer than spins 1 and 3, and we scale
the radii (as in Eq. (25)) such that the distance between spins 1 and
2 is equal to unity. The full molecular geometry is then specified by
the angle h between ~r12 and ~r13 and the dimensionless ratio
k ¼ r13=r12. By our labeling convention k is always greater than or
equal to 1. In the basis

fj3=2;3=2i; . . . ; j3=2;�3=2i; j1=2;1=2; E�i; j1=2;�1=2; E�i;
j1=2;1=2; Eþi; j1=2;�1=2; Eþig; ð30Þ

the rate matrix takes the form [19]



θ
r12

r13

1 2

3

λ=r13 / r12

Fig. 2. Left: Geometry of a generic three-spin system. Right: Mixing angle that
yields a state with vanishing dipolar decay rate (i.e., an exact DSR state) as a fun-
ction of k in the linear three-spin system.

Fig. 3. Discriminant function D from Eq. (27) as a function of k and h in the three-
spin system. The distance r12 has been scaled to 1. Smaller values of D correspond to
longer lifetimes.

182 A.K. Grant, E. Vinogradov / Journal of Magnetic Resonance 193 (2008) 177–190
ð31Þ

where w3=2 depends on the geometrical parameters k and h, while
w� and wþ depend also upon the mixing angle w3. Because of the
similarity between the states j1=2;1=2; Eþi and j1=2;1=2; E�i, the
function w� differs from wþ only through the substitution
w3 ! w3 þ p=2. The expression in Eq. (25) for the lowest-spin state
j1=2;1=2; Eþi is given by

X
X
wj1=2;1=2;Eþi!jXi ¼

3l2
0c

4�h2sc

40p2r6
12

½10wþ�

� 3l2
0c

4�h2sc

40p2r6
12

½Aðk; hÞ þ Bðk; hÞ cos 2w3

þ Cðk; hÞ sin 2w3�: ð32Þ

The complete expressions for A; B, and C are given in Appendix A.3.
We now turn to particular molecular geometries.

4.1.1. Linear systems
The simplest example of a linear symmetric system is given by

k ¼ 1 and h ¼ p (see Fig. 2). In this case,
hajH12
DDjbithbjH

12
DDjaitþs þ hajH

13
DDjbithbjH

12
DDjaitþs þ hajH

12
DDjbithbjH

13
DDjaitþs þ hajH

13
DDjbithbjH

13
DDjaitþs: ð36Þ
½Aðk; hÞ þ Bðk; hÞ cos 2w3 þ Cðk; hÞ sin 2w3�k¼1;h¼p

¼ 245
1536

ð1� cos 2w3Þ ð33Þ

From this we immediately see that for w3 ¼ 0, the state
j1=2;1=2; Eþi is immune to intramolecular dipolar relaxation and
should therefore be long-lived (i.e., it is an exact DSR state). More
explicitly, this means that the state in which the spins at the ends
of the molecule (in this case, spins 2 and 3) are in a singlet state
is long-lived. In terms of scalar couplings, this corresponds to the
case J12 ¼ J13, with arbitrary J23.

It is worth demonstrating explicitly how this long-lived state
comes about. To this end, consider the transition from
j1=2;1=2; Eþi to the spin-3/2 state j3=2;3=2i ¼ jaaai. For w3 ¼ 0,
we have
j1=2;1=2; Eþiw3¼0 ¼ j1=2;1=2iA ¼ ðjaabi � jabaiÞ=
ffiffiffi
2
p

: ð34Þ

It is useful to decompose the intramolecular dipolar Hamiltonian
into a sum of pairwise interactions: HDD � H12

DD þ H13
DD þ H23

DD. At
any given instant of time, the highly symmetric forms of the
states j1=2;1=2; Eþi and j3=2;3=2i lead to the following simple
relationships between the matrix elements of the different terms
in HDD:

h3=2;3=2jH12
DDj1=2;1=2;Eþiw3¼0¼�h3=2;3=2jH13

DDj1=2;1=2;Eþiw3¼0;

h3=2;3=2jH23
DDj1=2;1=2;Eþiw3¼0¼0 ð35Þ

The first two matrix elements are equal and opposite because of the
antisymmetry of j1=2;1=2; Eþi under the interchange of spins 2 and
3, while the last matrix element vanishes because H23

DD and
j3=2;3=2i are symmetric under interchange of spins 2 and 3, while
j1=2;1=2; Eþi is antisymmetric (this is similar to the case of the two
spin system considered in Ref. [14]). Finally, the transition rate Eq.
(18) involves products of correlation functions of these matrix ele-
ments. In the abbreviated notation jai ¼ j1=2;1=2; Eþi and
jbi ¼ j3=2;3=2i, the non-vanishing part of the integrand in Eq.
(20) is given by
Finally, using the symmetry relations in Eq. (35), we see that this
quantity vanishes identically owing to a cancellation:

2hajH12
DDjbithbjH

12
DDjaitþs � 2hajH12

DDjbithbjH
12
DDjaitþs � 0: ð37Þ

This observation is in agreement with previous studies of dipolar
relaxation in linear symmetric molecules [21,22]

Asymmetric linear systems (i.e., those with k different from 1)
also possess long-lived states. Evaluating A;B, and C for general val-
ues of k and h ¼ p yields

½Aðk; hÞ þ Bðk; hÞ cos 2w3 þ Cðk; hÞ sin 2w3�h¼p

¼ 5

48k6ð1þ kÞ6
ðrðkÞ þ sðkÞ sin 2w3 þ tðkÞ cos 2w3Þ; ð38Þ
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where r; s, and t are polynomials that can be obtained by making
appropriate substitutions in the expressions in Appendix A.3. Solv-
ing for w3 in terms of k yields the curve displayed in Fig. 2. For k ¼ 1
we return to the case of the symmetric linear system described
above, and the mixing angle tends to zero. As k becomes signifi-
cantly larger than 1, the mixing angle tends to p=3. Referring to
the discussion at the end of Section 2.1, we see that in this large-
k limit, where spin 3 is distant from spins 1 and 2, the long-lived
state tends toward a singlet state of spins 1 and 2 as one would
expect.

Scalar couplings that yield a state with a vanishing dipolar
relaxation rate can be computed using the results in Appendix
A.2. For instance, at k ¼ 2, we see from Fig. 2 that the dipolar decay
rate of the state j1=2;1=2; Eþi vanishes when w3 ’ 0:307p ’ 0:965
radians, while the decay rate of j1=2;1=2; E�i vanishes when
w3 ’ 0:965� p=2 (modulo p). The latter value of w3 is obtained,
for instance, when J12 ’ 2:64 Hz, J13 ’ �0:44 Hz, and J23 ’ 0:1 Hz,
or any positive multiple of these values. As explained in more de-
tail in Appendix A.2, this is just one example of a two-parameter
family of possible scalar couplings, all of which yield the appropri-
ate value of w3.

4.1.2. Triangular molecules
In general, for physically realistic geometries, non-linear three-

spin systems do not possess exact DSR states. To show this, it is en-
ough to consider the quantity D in Eq. (27). Fig. 3 displays a contour
plot of log D for triangular molecules as a function of k and h over a
range of values. Although D is quite small for large values of k, it
does not strictly vanish anywhere on the domain considered in
Fig. 3, apart from the lines h ¼ 0; p, which correspond to linear sys-
tems discussed above. In Fig. 4 we display the mixing angle that
yields the slowest decay rate as a function of k for several values
of h. As in the case of linear systems, the mixing angle tends to
p=3 at large values of k, indicating that the small values of D at
large values of k correspond to a relatively long-lived singlet state
of spins 1 and 2 that couples weakly to spin 3, which is well-sep-
arated from spins 1 and 2 in this limit.

Some insights can be gained from studying the behavior of D at
large values of k. Expanding Eq. (27) in a power series valid for
large values of k shows that it falls off as the eight power of the dis-
tance between spins 1 and 3:

Dðk� 1Þ 	 f ðhÞ
k8 	

f ðhÞ
r8

13

; ð39Þ

where f ðhÞ is a function of h that can be computed using the expres-
sions in Appendix A.3. The falloff of D seen at large distances is more
rapid than might be naively expected from the form of the intramo-
lecular dipolar Hamiltonian. Indeed, the transition rates involve two
powers of the Hamiltonian, each of which falls off as 1=r3. It might
therefore be expected that the rates would scale as 1=r6. The more
rapid scaling seen in Eq. (39) is a consequence of the fact that the
singlet state of spins 1 and 2 does not have any long-range dipolar
Fig. 4. Optimal mixing angle that minimizes the dipolar decay rate of the DSR states
in triangular three-spin systems as a function of k, for several values of h.
fields. Rather, the long-range field created by spins 1 and 2 is quad-
rupolar, and falls off as 1=r5. Combining this with the 1=r3 falloff of
the third spin’s dipolar field, we find the 1=r8 dependence in Eq.
(39). Note that this dependence is only found for the optimal choice
of mixing angle that yields a singlet state of spins 1 and 2. The quan-
tity D has, by definition, already been optimized in this respect. For
other non-optimal choices of the mixing angle, the falloff of the de-
cay rate can be slower.

Although triangular systems do not possess states that are
strictly immune to intramolecular dipolar relaxation, systems that
possess the optimal mixing angles displayed in Fig. 4 are still quite
long-lived. To illustrate this, in Fig. 5 we display the enhancement
factor E from Eq. (29), evaluated at the optimal value of the mixing
angle w3 for a range of k and h values. For moderate values of k, siz-
able suppressions of the intramolecular dipolar decay rate are seen
in the low-field system.

As a final example of a three-spin system, we consider the equi-
lateral triangle (k ¼ 1 and h ¼ p=3). This geometry occurs, for in-
stance, in methyl groups. Evaluating A;B, and C yields B ¼ C ¼0,
and hence

½Aðk; hÞ þ Bðk; hÞ cos 2w3 þ Cðk; hÞ sin 2w3�k¼1;h¼p=3 ¼
45
64

: ð40Þ

In this case, the high degree of symmetry between the three spins
yields an expression that is independent of w3. However, in spite
of this enhanced symmetry we conclude from Eq. (40) that the equi-
lateral triangle does not possess any exact DSR states.

As noted in the introduction, previous work [23] on the three-
spin equilateral triangle has indicated that this system possesses
a state with vanishing intramolecular dipolar relaxation in the case
of strongly anisotropic tumbling. We can see this explicitly by
replacing the correlator in Eq. (21), which assumes isotropic tum-
bling, with the appropriate value for anisotropic tumbling. We
have [23]Z þ1

�1
Y2Mðr̂ijðtÞÞY2M0 ðr̂klðt þ sÞÞe�ixsds

¼
3dM;�M0

8p

�ð�1ÞM 6D1

ð6D1Þ2 þ x2
þ 6D1 þ 12D3

ð2D1 þ 4D3Þ2 þ x2
cos 2ð/ij � /klÞ

( )

�
3dM;�M0

8p
ð�1ÞMfn1ðD1;xÞ þ n2ðD1;D3;xÞ cos 2ð/ij � /klÞg;

ð41Þ
Fig. 5. Enhancement factor of Eq. (29) as a function of k and h in the three-spin
system. The distance r12 has been scaled to 1. Note that the enhancement factor
tends to infinity along the vertical lines h ¼ 0 and h ¼ p, corresponding to linear
geometries.
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where D3 is the rotational diffusion coefficient for rotations about
the axis of symmetry, D1 is the coefficient for rotations about the
orthogonal axes, and /ij and /kl are the azumithal spherical coordi-
nates of the body-frame vectors r̂ij and r̂kl, which for this particular
geometry are taken to lie in the x� y plane. We have normalized
the correlator in Eq. (41) such that when D1 ¼ D3 it reduces to the
expression in Eq. (21) with D1 ¼ D3 ¼ 1=sc . Re-evaluating the rate
matrix from Eq. (31) using the correlator in Eq. (41) for the case
of the equilateral triangle gives two contributions, proportional to
n1 and n2, respectively:
ð42Þ
As a check, in the limit D1 ¼ D3 ¼ 1=sc we regain the expression
given in Eq. (31) after substituting k ¼ 1 and h ¼ p=3. As in the
case of isotropic tumbling, the rate matrix is independent of the
mixing angle w3. The long lifetime alluded to in [23] is found in
the extreme narrowing limit ðx
 D1;3Þ with D3 � D1. In this case,
n1 is much larger than n2 and relaxation via the first term in Eq.
(42) dominates. Hence the j ¼ 1=2 states, which have decay rates
proportional to n2, are longer-lived than the j ¼ 3=2 states, whose
decay rates are proportional to n1. However it may be inaccurate
to describe such states as ‘long-lived’ in the present context. In-
deed, in realistic situations the limit D3 � D1 occurs when D1 is
small because of a mechanical constraint on the molecular motion.
This mechanical constraint leads to rapid relaxation because it im-
plies a long correlation time for motion about the hindered axis,
which in the extreme narrowing limit leads to rapid transition
rates. Hence the limit D3 � D1 considered in [23] does imply that
the j ¼ 1=2 states are longer-lived than the j ¼ 3=2 states; however
the j ¼ 3=2 states are quite short-lived, and the j ¼ 1=2 states relax
via the second term in Eq. (42) at a rate that need not be espe-
cially slow.
1 23 4

ab b

λ=b/a

Fig. 6. Geometry of symmetric linear four-spin system (left) and mixing angle that
yields an exact DSR state as a function of k (right).
4.2. Four-spin system

Four-spin systems can be analyzed in a manner analogous to
three-spin systems. The principal difference is that the geometry
of the four-spin system cannot be specified as compactly. In gen-
eral, three additional parameters are needed to specify the location
of the fourth spin. We will therefore consider a few special cases
that either possess long-lived states or that occur frequently in
realistic molecules.

In block notation, the general form of the rate matrix Eq. (22) for
the four-spin system is

ð43Þ

where the blocks, from left-to-right or top-to-bottom, correspond to
the j ¼ 2; j ¼ 1, and j ¼ 0 states. The zeros in the lower right corner
are a consequence of the selection rule Eq. (23). As described above,
one consequence of these zeros is that the j ¼ 0 populations can only
equilibrate with the other levels via transitions to the j ¼ 2 states
(Fig. 1). For purposes of studying these transitions, the relevant
submatrix is the 5-by-2 block Wj¼0!j¼2, which has the simple form

Wj¼0!j¼2 ¼
g g g g g

h h h h h

� �
; ð44Þ

where g describes the rate of transitions to and from the level
j0;0; Eþi and h describes the rate of transitions to and from the level
j0;0; E�i. As in the three-spin case, g and h are functions of the spin
system geometry and the mixing angle w4. In addition, g and h differ
only by the substitution w4 ! w4 þ p=2. The general expressions for
g and h are too lengthy to be included here, but certain special cases
will be given below.

We now consider several particular geometries.

4.2.1. Linear systems
As in the three-spin system, linear spin systems containing four

spins possess states whose dipolar decay rates vanish exactly. To
illustrate this, we consider the linear symmetric geometry illus-
trated in Fig. 6. The two central spins are separated by unit dis-
tance, while the two outer spins are located a distance k away
from the central spins on either side. Evaluating the rates in Eq.
(22) for the spin-zero states and casting the result in the form of
Eq. (25), we obtain the functions A;B and C in terms of the geomet-
rical parameter k. The resulting expressions are given in Appendix
A.4. Proceeding as in the analysis of Eq. (25), we minimize the de-
cay rate with respect to the mixing angle, and find the values of w4

for which the decay rate of the state j0;0; Eþi vanishes. Fig. 6 dis-
plays the resulting values of w4. As k!1, w4 ! 0, in which case
the inner two spins (spins 1 and 2 in Fig. 6) form a singlet state that
decouples from the outer two spins (spins 3 and 4), which are also
in a singlet state.

4.2.2. Rectangular systems
The geometry of a rectangular system is shown in Fig. 7; the

width of the system is scaled to unity, while the height is equal
to k. Without loss of generality, we assume k P 1. As in the case
of triangular molecules, we find that systems of this type do not
in general possess exact DSR states for realistic geometries. At large
values of k they do, however, possess states with very slow intra-
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a

b

λ=b/a

3 4

Fig. 7. Geometry of rectangular four-spin system (left) and discriminant function D
from Eq. (27), on a semi-logarithmic scale, as a function of k, with the distance a
scaled to 1. Smaller values of D correspond to longer lifetimes.
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molecular dipolar decay rates. Indeed, computing the rates from
Eq. (22) and evaluating the quantity D from Eq. (27) gives the result
illustrated in Fig. 7. This quantity, and hence the lower bound L, Eq.
(26), on the intramolecular dipolar decay rate of the spin-zero
states, is non-zero over the entire range of k values in Fig. 7. In
Fig. 8 we display the mixing angle that gives the slowest transition
rate as a function of k, for the j0;0; Eþi state.

In the limit of large k, spins 1 and 2 are well separated from
spins 3 and 4, and the mixing angle that minimizes the decay rate
of the j0;0; Eþi state tends to zero. Referring to the basis set in Eq.
(16), we see that the corresponding long-lived state consists of a
state in which spins 1 and 2 are in a relative singlet, as are spins
3 and 4. The complete state is therefore a pair of well-separated,
weakly interacting singlets. The leading behavior of D in this limit
is

Dðk� 1Þ 	 1
k10 	

1
r10

13

: ð45Þ

The rapid falloff of the decay rate is accounted for by the fact that
the two singlets interact via quadrupolar long-range fields. Since
these fields fall off as 1=r5, the rate falls of as 1=r10.

Although rectangular systems do not possess exact DSR states,
in some cases these systems do possess population imbalances in
the spin-one levels that are immune to intramolecular dipolar
relaxation because of a discrete symmetry. A full discussion of
these symmetries is beyond the scope of this paper. However,
one example of such a symmetry can be formulated in terms of
the exchange operators Pab that exchange the spin states of nuclei
a and b. Referring to Fig. 7, we see that the combination P12P34 ex-
changes the spin states on opposite sides of the rectangle, while
P13P24 exchanges the spin states on the top and bottom of the
rectangle. Explicit computation shows that the intramolecular
dipolar Hamiltonian is invariant under the action of the
operator P � ðP12P34ÞðP13P24Þ. Referring to the basis states in
Eqs. (10)–(13), we see that all of these states are eigenstates of P
with eigenvalue +1 except for the states j1;miA and j1;miB, which
have eigenvalue �1. Just as in the case of the two-spin system,
Fig. 8. Optimal mixing angle as a function of k for the rectangular spin system.
the states with eigenvalue �1 cannot equilibrate with states hav-
ing eigenvalue +1 via intramolecular dipolar interactions. This
gives rise to long-lived population imbalances between the states
j1;miA and j1;miB and the remaining states. Of course, these
long-lived populations only exist in systems having a high degree
of spatial symmetry, and where the eigenstates of P are also eigen-
states of the Hamiltonian. Certain specific combinations of scalar
couplings are required in order to satisfy this condition. These
long-lived population imbalances differ from DSR states because
they involve two families of states that cannot equilibrate via intra-
molecular dipolar interactions. By contrast, exact DSR states are
single states that cannot equilibrate with any other state.

In Fig. 9 we display the smallest eigenvalue of the matrix
WHigh

ab � dab
P

cWHigh
ac appearing in Eq. (29) divided by each of the

15 non-trivial eigenvalues of WLow
ab � dab

P
cWLow

ac . This yields a total
of 15 non-trivial ratios, each of which measures the lifetime
enhancement of a particular relaxation mode of the low-field sys-
tem. These ratios are plotted on a semi-logarithmic scale as a func-
tion of w4 for two representative values of the Euler angles ða; b; cÞ
(see Eq. (17)) and with k ¼ 3=2. In the absence of an exact DSR
state, the analysis of these plots is complicated by the fact that
the decay modes generally involve admixtures of populations in
many states. However we can still make some qualitative com-
ments. In both panels, we see that two of the eigenvalue ratios, la-
beled by C1 and C2, show a strong dependence on the mixing angle
w4. These decay modes have sizable populations in one of the spin-
zero states. The approximate DSR mode corresponds to the higher
of the two curves, namely C2. The choice of Euler angles in the left
panel of Fig. 9 results in relatively long-lived spin-1 decay modes,
as described in the preceding paragraph, while the values on the
right are further from the highly symmetric values that yield long
lifetimes. These long-lived spin-1 decay modes are indicated by the
(nearly flat) curves labeled C3. In both panels, the approximate DSR
modes are among the longest-lived modes of the low-field system,
possessing enhancement factors that range from roughly 5–10
depending upon the Euler angles. Larger enhancement factors
(	50) are seen for the spin-1 modes, particularly for small values
of the Euler angles such as those shown in the left panel of Fig. 9.
4.2.3. A planar non-linear system with long-lived states
Although the rectangular system does not possess an exact DSR

state, a variety of other non-collinear geometries can be found that
do possess such states. In Fig. 10 we display a sample planar geom-
etry where spins 1 and 2 are separated by unit distance along the y
axis, and spins 3 and 4 are located at positions x3 and x4 along the x
axis. The functions A;B, and C are given in Appendix A.6. Owing to
the high degree of symmetry between spins 1 and 2, in this case we
find that a cancellation similar to that illustrated above in Eqs.
(34)–(37) leads to C ¼ 0. This implies that the decay rates have
the simplified form

X
X

W j0;0;Eþi!jXi ¼
3l2

0c
4�h2sc

40p2r6
12

½Aðx3; x4Þ þ Bðx3; x4Þ cos 2w4�: ð46Þ

Because the rates must always be positive, we conclude that
Aðx3; x4ÞP jBðx3; x4Þj, for if this were not the case the rate could
be negative for certain values of the mixing angle. We have verified
this inequality numerically for �10 < x3; x4 < 10. We conclude that
the dipolar decay rate vanishes only when Aðx3; x4Þ ¼ jBðx3; x4Þj and
w4 ¼ 0 (in the case Bðx3; x4Þ < 0) or p=2 (in the case Bðx3; x4Þ > 0).

In Fig. 10 we display D as a function of x3 and x4. We see that D
vanishes along the line x3 ¼ x4 as well as for values of x3 and x4

lying along the curve labeled C1. For these particular configura-
tions, the system possesses an exact DSR state for suitable values
of the mixing angle w4. Inspecting the values of A and B along the
line x3 ¼ x4 and the curve C1 we find that both sets of exact DSR



Fig. 9. Enhancement factors for all decay modes of the four-spin system as a function of the mixing angle w4 for k ¼ 3=2 and two values of the spin-1 Euler angles. Left: a ¼ 0,
b ¼ 0, c ¼ p=10. Right: a ¼ p=4, b ¼ p=3, c ¼ �p=3.
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Fig. 10. Left: Geometry of planar four-spin system. Right: Discriminant function D
as a function of x3 and x4. On the right, the distance a has been scaled to 1. Smaller
values of D correspond to longer lifetimes.
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states have w4 ¼ 0, corresponding to a state where spins 1 and 2
are in a relative singlet, as are spins 3 and 4. The exact DSR states
along the line x3 ¼ x4 therefore correspond to a degenerate,
unphysical case where spins 3 and 4 coalesce into a point-like sin-
glet, while spins 1 and 2 form a second singlet. The exact DSR
states along the curve C1 correspond to a combined state of a ‘ver-
tical’ singlet formed by spins 1 and 2, and a second ‘horizontal’
singlet formed by spins 3 and 4 (in the orientation of Fig. 10).
These two singlets are situated such that neither singlet interferes
with the singlet order of the other. In the limit where spin 4 is
very distant from the other spins (i.e., x4 !1) we see that the
configuration with an exact DSR state corresponds to a linear
arrangement of spins 1,2 and 3 (i.e. x3 ! 0), with spins 1 and 2
in a singlet. After a trivial re-labeling of the spins, this corresponds
well with the exact DSR state of the linear three-spin system that
was discussed above.

It is tempting to speculate that the exact DSR states along the
curve C1, comprised of two orthogonal singlet pairs, may have some
simple geometrical property that accounts for the absence of inter-
singlet relaxation. However, this appears not to be the case. The ab-
sence of intramolecular dipolar relaxation in these states is the re-
sult of an interference effect that can be understood as follows.
First, because these states are antisymmetric under interchange of
either spins 1 and 2 or spins 3 and 4, the dipolar interactions be-
tween spins 1 and 2 vanish, as do those between spins 3 and 4.
The only non-vanishing dipolar matrix elements correspond to
interactions between a spin in the first singlet (i.e., spins 1 and 2)
and a spin in the second singlet (i.e., spins 3 and 4). Second, owing
to the geometrical symmetry between spins 1 and 2, the spatial cor-
relation functions appearing in Eq. (20) take a simple form. The de-
cay rate of states with w4 ¼ 0 can therefore be written as
X
X
W j0;0;Eþiw4¼0!jXi /

1
r6

13

½1� P2ðcos h12;23Þ� þ
1

r6
14

½1

� P2ðcos h14;24Þ� �
2

r3
13r3

14

½P2ðcos h13;14Þ

� P2ðcos h13;24Þ�: ð47Þ

The first term in square brackets is non-negative, and results from
dipolar interactions with spin 3. The second term is also non-nega-
tive, and results from dipolar interactions with spin 4. The last term,
however, can be positive or negative, and results from interference
between interactions with spin 3 and spin 4. For the exact DSR con-
figurations described in the previous paragraph, the last term can-
cels the first two. Indeed, re-expressing Eq. (46) in terms of the
variables x3 and x4, with x4 P x3, we find

X
X
W j0;0;Eþiw4¼0!jXi /

x3

ð1þ 4x2
3Þ

5=2 �
x4

ð1þ 4x2
4Þ

5=2

 !2

: ð48Þ

This quantity vanishes when x3 ¼ x4 and for values of x3 and x4 that
satisfy

x3

ð1þ 4x2
3Þ

5=2 ¼
x4

ð1þ 4x2
4Þ

5=2 : ð49Þ

It is these latter solutions that correspond to the points along curve
C1.

Referring to Fig. 10, we see that the planar system possesses
four more exact DSR states located at the points
ðx3; x4Þ � �ð0:5757;1:4423Þ, as well as the symmetric points ob-
tained by interchanging spins 3 and 4. At each of these points,
we find that B is positive, implying that the mixing angle w4 for
these states is equal to p=2 (see Eq. (46)). In contrast to the states
considered in the previous paragraph, these states do not corre-
spond to a combination of singlet states. Indeed, referring to the
discussion at the end of Section 2.2, we see that this value of w4

does not correspond to any pairwise combination of singlets in
the state j0;0; Eþi.

4.2.4. A sample non-planar system with long-lived states
In Fig. 11 we display a sample non-planar geometry for the

four-spin system. The system is obtained by modifying the rectan-
gular geometry of Fig. 7 by rotating one pair of spins out of the
plane of the molecule by an angle /. Without loss of generality,
we assume that 0 6 / 6 p=2, because geometries with values of
/ outside this range are related to those within this range by a sim-
ple relabelling of the spins. For special choices of the geometrical
parameters k and /, the system reduces to a rectangle or tetrahe-
dron. The expressions for the functions A;B and C are given in
Appendix A.7 for the case / ¼ p=2; the expressions for general val-
ues of / are too lengthy to be included in full. As in the previous
examples, we compute the quantity D from Eq. (27) as a function
of k and /. Fig. 11 shows a contour plot of D as a function of k
and /. The system possesses states with vanishing dipolar relaxa-
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Fig. 11. Left: Geometry of non-planar four-spin system. Note that spins 3 and 4 are
rotated out of plane by an angle /, while the line connecting spins 3 and 4 is kept
perpendicular to the central horizontal line of length b. When / ¼ 0 the system
reduces to a rectangular geometry. Right: Discriminant function D as a function of k
and /. The tickmark labeled ‘T’ on the right-hand border indicates values of k and /
that yield a tetrahedral geometry. In the figure on the right, the distance a has been
scaled to 1. Smaller values of D correspond to longer lifetimes.
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tion rates along two curves in the parameter space, which we label
as C1 and C2. In Fig. 12 we display the values of w4 that yield long-
lived states along these two curves. Note that, along both of the
curves C1 and C2, for values of k approaching zero, the systems with
exact DSR states have values of / that also tend to zero. Referring
to Fig. 11, we see that, in this limit, spins 1 and 3 approach one an-
other, as do spins 2 and 4. Furthermore, from Fig. 12, we see that
for small values of k the mixing angle w4 approaches p=3. Referring
to the discussion at the end of Section 2.2, this corresponds to a
singlet state of spins 1 and 3, together with a separate singlet state
of spins 2 and 4. Hence, the system tends towards a pair of nearly
point-like singlets that are well separated (in comparison to their
size) as k approaches zero, as one would expect. Likewise, as k
tends to larger values along the curve C1, the mixing angle tends
to zero. In this limit, spins 1 and 2 are well-separated from spins
3 and 4, and the exact DSR state tends toward a singlet state of
spins 1 and 2 together with a second singlet state of spins 3 and 4.

A tetrahedral geometry is obtained by setting k ¼ 1=
ffiffiffi
2
p

and
/ ¼ p=2. The corresponding point is indicated by a tickmark labeled
‘T’ on the right-hand border of Fig. 11. We conclude that tetrahedral
molecules do not possess exact DSR states; indeed, the lifetime of
the tetrahedral system, as measured by the quantity D, is relatively
short in comparison to neighboring geometries. However, as in the
case of the equilateral triangle, this highly symmetric geometry
leads to transition rates from the two spin-zero states that are equal
and that do not depend on w4. In terms of the functions g and h, we
have g ¼ h ¼ 3=16 (see Eq. (44)). Moreover, computation of the full
Fig. 12. Mixing angles that yield exact DSR states in non-planar four-spin system as
a function of k. Solid curve corresponds to curve C1 in Fig. 11; dashed curve corr-
esponds to C2. The dashed curve terminates at k 	 1=3 because this is the largest
value of k attained along the curve C2.
decay matrix, including the j ¼ 1 states, shows that the tetrahedral
system does not possess long-lived population imbalances of the
sort found above in the rectangular system.

4.3. Larger numbers of spins

The above analysis can be extended to systems containing
more than four spins. Indeed, one might expect the lowest-spin
states of arbitrary systems to possess relaxation bottlenecks of
the sort described here. However, the N > 4 cases differ from
the cases N ¼ 2;3;4 in that the number of states possessing the
lowest possible total spin (namely j ¼ 0 for N even and j ¼ 1=2
for N odd) is significantly larger. Indeed, the five-spin system
has ten states (five doublets) with j ¼ 1=2, while the six-spin sys-
tem has five j ¼ 0 states. As a result, compact expressions for the
lowest-spin energy eigenstates, such as in Eqs. (8) and (16), are
not generally possible. The low-spin eigenstates depend on a lar-
ger number of mixing angles, which in turn complicates the anal-
ysis of their lifetimes.

A second difference between the cases N ¼ 2;3;4 and the case of
N odd and larger than three is that, in the latter case, the j ¼ 1=2
states can undergo direct transitions to both the j ¼ 3=2 and
j ¼ 5=2 states. Consequently, in order to have a long-lived DSR state,
these systems must be arranged in such a way that both of these
relaxation pathways are suppressed. Systems with N even and larger
than four are similar to the N ¼ 4 system because the spin-zero pop-
ulations in these systems can only equilibrate via transitions to the
j ¼ 2 states. Transitions to the j ¼ 1 levels, and to the levels with
j > 2, are forbidden by the selection rule in Eq. (23).

Yet another difference between the cases N ¼ 2;3;4 and cases
with larger N is that, in the latter case, the transition rates depend
on two sets of mixing angles, namely the mixing angles of the low-
est-spin states and the mixing angles of the higher spin states. In
the cases N ¼ 2;3;4, the states that are accessible from the low-
est-spin states also happen to have the maximum total spin. As a
consequence, these states are independent of the scalar couplings,
as seen in Eqs. (2) and (10), and do not involve any mixing angles.
By contrast, in the six-spin system, for example, the spin-zero
states can make transitions to any one of five spin-two multiplets.
These five multiplets will depend on a family of mixing angles that
depend, in turn, on the scalar couplings.

Though these considerations do not show that long-lived states
do not exist in systems with more than four strongly coupled spins,
they do illustrate the complications encountered in these systems.

In systems with more than four spins that contain a subset of
two, three or four isolated spins that couple weakly to the remain-
ing spins, the isolated subset can possess long-lived states of the
sort described in the preceding sections. The lifetimes of these
states will be shortened by couplings between the isolated subset
and the remaining spins; the degree of shortening can be estimated
using standard perturbative techniques.
5. Conclusion

The examples described in the preceding sections show that a
wide variety of spin systems can possess states that are immune
to intramolecular dipolar relaxation in the extreme narrowing lim-
it. Even in systems that do not possess ‘dipole selection rule’ long-
lived states whose dipolar decay rates vanish exactly (such as the
rectangular four-spin system), discrete symmetries can result in
long-lived population imbalances. The results presented above
and in Appendices can be used to systematically search for systems
that should possess long-lived states, and to determine what role,
if any, the selection rule in Eq. (23) plays in the determining the
relaxation times of these systems.
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Appendix A

A.1. Eigenvalues and eigenvectors for four-spin case

The eigenvalues of j ¼ 0 block of the four-spin Hamiltonian H
given in Eq. (15) are

E� ¼
p
2
½�J � D�; ðA1:1Þ

where J ¼
P

k<lJkl and D is given by
D ¼ 2

J2 � 3ðJ12½J13 þ J14 þ J23 þ J24� þ J13½J14 þ J23 þ J34� þ J14½J24 þ J34� þ J23½J24 þ J34� þ J24J34Þ

q
: ðA1:2Þ
The eigenvectors are given by Eq. (16), where the mixing angle w4 is
given by

w4 ¼ � tan�1

ffiffiffi
3
p
½J13 � J14 � J23 þ J24�

J13 þ J23 þ J14 þ J24 � 2ðJ12 þ J34Þ þ D

 !
: ðA1:3Þ
A.2. Mixing angles

Here we show that it is mathematically possible to select scalar
couplings that will yield any chosen value of the mixing angle wN in
the three- and four-spin systems. This task is essentially the in-
verse of the usual process of finding the eigenvectors (and hence
the mixing angle) from the scalar couplings. For any given mixing
angle wN , any matrix of the form
QðEþ; E�;wNÞ �
cos wN � sin wN

sin wN cos wN

� �
Eþ 0
0 E�

� �
cos wN sin wN

� sin wN cos wN

� �
¼ cos2 wNEþ þ sin2 wNE� ðEþ � E�Þ sin wN cos wN

ðEþ � E�Þ sin wN cos wN sin2 wNEþ þ cos2 wNE�

" #
ðA2:1Þ
will, by construction, have eigenvalues Eþ and E� with mixing angle
wN . Care has been taken to ensure that the sign conventions in Eq.
(A2.1) match those in Eqs. (8) and (16). A set of scalar couplings that
yield the desired mixing angle may be determined by (i) choosing
two arbitrary energy eigenvalues Eþ and E� satisfying Eþ P E�
(the inequality is a consequence of Eqs. (7) and (A1.1)), (ii) comput-
ing the matrix Q, and (iii) solving the linear system of equations

HðJklÞ ¼ QðEþ; E�;wNÞ ðA2:2Þ

for the couplings Jkl. The Hamiltonians HðJklÞ for the three- and
four-spin systems have been given in Eqs. (6) and (15). In the
Aðk; hÞ ¼ 5
96

4þ 4

Q3 �
4

Q5=2 �
k3 þ 4k5 þ k8 þ Q 5=2½k3 � 4�

Q 5=2k6

(

þ8k½k3 þ 1� cos h� 3½1þ Q 5=2 þ k5� cos 2h

Q 5=2k3

)

Bðk; hÞ ¼ 5

96Q 3k6 2Q 3½1� k3 þ k6� � 4k6 þ Q1=2k3½1þ 4k2 þ 4k3 þ k
n

� cos hþ 3ð1� 2Q 5=2 þ k5Þ cos 2h�
o

Cðk; hÞ ¼ � 5
16

ffiffiffi
3
p 1� 1

k6 þ
1þ 4k2 � 4k3 � k5 þ 8k½k3 � 1� cos h� 3

2Q 5=2k3

(

three-spin case, the system Eq. (A2.2) comprises three indepen-
dent equations for the three couplings J12;J13, and J23. The result
is a family of scalar couplings parametrized in terms of the two
energy eigenvalues Eþ and E�. The four-spin case involves a to-
tal of six scalar couplings, and consequently the system of Eq.
(A2.2) yields a family of solutions parametrized by two energy
eigenvalues and three undetermined scalar couplings; any
values of these undetermined couplings will yield a Hamilto-
nian with the chosen energy eigenvalues and mixing angle. In
the three-spin system, the solution to the system of Eq.
(A2.2) is

2pJ12 ¼ �
1
3
ð2½E� þ Eþ� þ ½E� � Eþ�½cos 2w3 �

ffiffiffi
3
p

sin 2w3�Þ

2pJ13 ¼ �
1
3
ð2½E� þ Eþ� þ ½E� � Eþ�½cos 2w3 þ

ffiffiffi
3
p

sin 2w3�Þ

2pJ23 ¼ �
4
3
ðEþ cos2 w3 þ E� sin2 w3Þ:

ðA2:3Þ

In the four-spin system, the solution to the system of Eq. (A2.2)
is
2pJ12¼�
1
3
ð3ð2pJ34Þþ4Eþ cos2 w4þ4E� sin2 w4Þ

2pJ13¼�
1
3
ð2½E�þEþ�þ3ð2pJ24Þþ½E��Eþ�½cos2w4�

ffiffiffi
3
p

sin2w4�Þ

2pJ14¼�
1
3
ð2½E�þEþ�þ3ð2pJ23Þþ½E��Eþ�½cos2w4þ

ffiffiffi
3
p

sin2w4�Þ:

ðA2:4Þ
A.3. A;B and C for the three-spin system

For the three-spin system illustrated in Fig. 2, the functions A;B
and C are given by
5 � 8kð1þ k3Þ

½k5 � 1� cos 2h
)
;

ðA3:1Þ



Magnetic Resonance 193 (2008) 177–190 189
where Q ¼ 1þ k2 � 2k cos h.

A.4. A; B, and C for the symmetric linear four-spin system

For the symmetric linear four-spin system illustrated in Fig. 4,
the functions A;B and C are given by

A.K. Grant, E. Vinogradov / Journal of
AðkÞ ¼ 5
24k6

3½1þ 3kð1þ kÞ�2

ð1þ kÞ6
þ ð1þ 9kþ 33k2 þ 62k3 þ 60k4 þ 12k5 � 48k6 � 66k7 � 36k8 � 8k9Þ2

ð1þ 3kþ 2k2Þ6

( )

BðkÞ ¼ � 5
24

1� 2

ð1þ kÞ6
� 8

ð1þ kÞ3
� 12

ð1þ kÞ2
þ 1

ð1þ 2kÞ6
þ 2

ð1þ 2kÞ3
þ 96

ð1þ 2kÞ2
� 2þ 4k3½3k� 1�

k6

( )

CðkÞ ¼ � 5
4
ffiffiffi
3
p 1

k6 �
1

ð1þ kÞ6
þ 1

ð1þ kÞ3
þ 1

ð1þ 3kþ 2k2Þ3
� ð1þ 2kÞ3 þ 1

k3ð1þ 2kÞ3

( )
;

ðA4:1Þ
A.5. A; B and C for the rectangular four-spin system

For the rectangular four-spin system of Fig. 7,

AðkÞ ¼ 5
12

2þ 1
k3 þ

2
k6 þ

1

ð1þ k2Þ3

(

þ1� 2k2 � 2k3 þ k5

k3ð1þ k2Þ5=2 þ 1� 4k2 þ k4

ð1þ k2Þ5

)

BðkÞ ¼ � 5
24

4þ 2
k3 �

2
k6 �

1

ð1þ k2Þ3

(

�4� 8k2 þ 4k3 � 2k5

k3ð1þ k2Þ5=2 � 1� 4k2 þ k4

ð1þ k2Þ5

)

CðkÞ ¼ � 5
8
ffiffiffi
3
p 2

k3 þ
2
k6 �

1

ð1þ k2Þ3

(

þ 4� 2k2

ð1þ k2Þ5=2 �
1� 4k2 þ k4

ð1þ k2Þ5

)
: ðA5:1Þ
A.6. A; B, and C for the planar four-spin system

For the planar four-spin system of Fig. 10,

1
5

Aðx3; x4Þ ¼
1þ D3 þ D6

24D6 þ 16
3

1
P3

3

þ 1
P3

4

 !

� 8
3

1� 16x2
3 þ 16x4

3

P5
3

 

þ1� 16x2
4 þ 16x4

4

P5
4

!

� 1
3D3

1� 8x2
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3�
P5=2
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þ1� 8x2
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þ 16
3
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Bðx3; x4Þ ¼ �
1þ D3 þ D6

24D6 þ 8
3

1
P3

3

þ 1
P3

4

 !

� 16
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þ1� 8x2
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� 16
3
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4
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ðA6:1Þ
Where P3;4 ¼ ð1þ 4x2
3;4Þ, D ¼ ðx3 � x4Þ, and we have taken x4 P x3.

A.7. A;B, and C for the three-dimensional four-spin system

The general expressions for A;B, and C for the system of Fig. 11
are too lengthy to report here. For the special case / ¼ 0, the
expressions reduce to those given for the rectangular system in
Appendix A.5. For the case / ¼ p=2,

1
5

Aðk;/ ¼ p=2Þ ¼ 1
24
þ 6

ð1þ 2k2Þ5
� 4

ð1þ 2k2Þ4

þ 4

3ð1þ 2k2Þ3
� 1ffiffiffi

2
p
ð1þ 2k2Þ5=2

þ
ffiffiffi
2
p

3ð1þ 2k2Þ3=2

1
5

Bðk;/ ¼ p=2Þ ¼ �1
5

Aðk;/ ¼ p=2Þ þ 6

ð1þ 2k2Þ5

Cðk;/ ¼ p=2Þ ¼ 0:

ðA7:1Þ
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